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Abstract

We study finite dominating sets (FDS) for the ordered median problem. This kind of problems allows to deal simultaneously
with a large number of models. We show that there is no valid polynomial size FDS for the general multifacility version of
this problem even on path networks.
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1. Introduction

Network location models have been widely studied
in the literature as can be seen in several textbooks
[1,4,8,12]. Since the seminal paper by Hakimi[7],
much of this work has been devoted to identify finite
sets of points where an optimal solution of a problem
must belong to. These sets, calledfinite dominating
sets(FDS), reduce the search for an optimal solution
of a problem to a finite set of candidates.
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In the last years, a new type of function has attracted
the attention of locators: the ordered median objective
function. The corresponding ordered median problem
allows a common algebraic analysis for a wide range
of location models since many of the classical prob-
lems in location theory can be formulated as some
of its particular instances. In the literature of loca-
tion analysis, we can find a number of results con-
cerning the ordered median problem, for example in
the continuous case, characterizations of the optimal
solution set and some algorithms have been obtained
in [5,6,14–18]. On networks, finite dominating sets
are known for particular instances of the problem, see
[10,11,13,19]. Recently, also the discrete version of
this model has been studied in[2,3]. (This objective
function was already introduced in[21] in the context
of multi-criteria decision making.)
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Nevertheless, it has been an open problem whether
polynomial size FDS exist for the general version of
this problem even on path networks. In this paper, we
show that such sets do not exist.
An overview of the literature, involving characteri-

zations of FDS, shows a lot of papers that succeed in
finding this type of sets for different versions of lo-
cation models. Ref.[9] is an excellent paper on this
subject that characterizes FDS for a large number of
location problems. However, we are not aware of any
paper that states a negative result concerning existence
of a polynomial size FDS for a given problem.
The main result in this paper proves that there exists

a path graph withn nodes satisfying the following
property: there is a family ofO(nn) orderedn4-median
problems defined on the above path graph, such that:
(1) each problem has a unique optimal solution and (2)
each optimal solution contains an element (facility) not
included in any other solution. Therefore, in general,
the multifacility ordered median problem cannot have
polynomial size FDS.
To introduce the problem formally, some notation is

needed. LetG=(V ,E) denote a path graph whereV=
{v1, . . . , vn} is the set of nodes (demand points) and
E the set of edges. Suppose without loss of generality
that the nodes are points on the real line, satisfying
v1� . . . �vn. Therefore, we denote by[vi, vi + 1]
the edge that joins the nodesvi and vi + 1 for i =
1, . . . , n − 1. LetA(G) be the interval[v1, vn], then
the distance from two pointsxandy in A(G) is simply
d(x, y)= |x − y|. In the same way, the distance from
a node to a set withp points,Xp = {x1, . . . , xp} ⊆
A(G), is defined as

d(v,Xp)= min
i=1,...,p

d(v, xi)= min
i=1,...,p

|xi − v|.

Notice thatA(G) is a metric space whose distance
function is induced by the edge lengths, see[20].
We consider a set of non-negative weights

{w1, . . . , wn}, called w-weights, where the weight
wi is associated to the nodevi and represents the
intensity of the demand at this node, fori = 1, . . . , n.
Let � be a permutation of the set{1, . . . , n} satis-

fying that

w�1d(v�1, Xp)�w�2d(v�2, Xp)

� . . . �w�nd(v�n , Xp).

For a given�=(�1, . . . , �n), vector of non-negative
components, called�-weights, thep-facility ordered
median function (the orderedp-median function) on
G is defined as

F�(Xp) : =
n∑
i=1

�iw�i d(v�i , Xp)

: =
n∑
i=1

��iwid(vi, Xp), (1)

where � is a permutation of{1, . . . , n} such that
�j <�k if wjd(vj ,Xp)�wkd(vk,Xp) for all j, k ∈
{1, . . . , n}.
The�-weights are the parameters that define the ob-

jective function and depending on the values of these
parameters we obtain different problems. In fact, the
orderedp-median problem allows to model thep-
facility versions of the median (�i = 1, ∀i), center
(�n = 1, �i = 0, ∀i �= n), �-centdian (�n = 1, �i =
�, ∀i �= n), k-centrum (�i = 1, for i = n − k +
1, . . . , n and�i = 0 for i = 1, . . . , n− k), k-trimmed
p-mean location model (we omit thek2 smallest and
k
2 largest weighted distances, to simplify assumek is
even,�1 = . . . = � k

2
= 0, � k

2+1 = . . . = �
n− k2 = 1,

�
n− k2+1 = . . . = �n = 0), etc. Notice that we do not

impose any assumption on the monotonicity of the�-
weights, therefore we do not restrict to the convex nor
the concave cases, see[13].
Although we have already used the concept of FDS,

in what follows, we give its formal definition.

Definition 1.1. Let G = (V ,E) be a graph withn
nodes and positive edge lengths. Letw1, . . . , wn be
non-negative reals and� = (�1, . . . , �n) a vector of
non-negative components. A finite subsetXofA(G) is
an FDS, for the multifacility ordered median problem,
if for any integerp andw-weights associated tovi for
i=1, . . . , n, eitherwi or 0 there is an optimal solution,
Xp, of the respective orderedp-median problem, such
thatXp ⊂ X.

Obtaining an FDS for this model allows the de-
velopment of different types of algorithms to solve
it. Therefore, recently much effort has been devoted
to obtain FDS for the ordered median problems (see
[10,11,13,19]). In the following, we recall several
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sets used to define FDS for particular instances of the
problem.
A point x ∈ A(G) is in equilibrium with respect to

the nodesvk, vl , vk �= vl , if: wk d(vk, x)=wl d(vl, x).
It is important to realize that there may exist subedges
in equilibriumwith respect to two nodes.We denote by
EQ the set consisting of the nodes ofG, the points in
equilibrium which are isolated and the extreme points
of the subedges in equilibrium. Moreover, we consider
the following sets:

Y = {y ∈ A(G) : wid(vi, y)= wjd(vj , z),
vi, vj ∈ V, z ∈ EQ},

T = {X2 = (x1, x2) ∈ A(G)× A(G) : ∃vr , vs
served byx1 andvr ′ , vs′ served byx2, such

thatwrd(vr , x1)= wr ′d(vr ′ , x2) andws
d(vs, x1)= ws′d(vs′ , x2). Moreover, ifwr = wr ′
andws = ws′ , then the slopes of the functions

d(vr , ·) andd(vs, ·), in the edge that

x1belongs to, must have the same signs atx1

and the slopes of the functionsd(vr ′ , ·)
andd(vs′ , ·), in the edge thatx2 belongs to,

must have different signs atx2}.
Ref.[13] proves that for�1� . . . ��n�0 the node set
V constitutes an FDS for the multifacility ordered me-
dian problem. For arbitrary non-negative�-weights, it
also obtains thatEQ is an FDS for the single-facility
ordered median problem.
Ref. [11] studies the multifacility ordered median

problem where the�-weights are defined as

a = �1 = . . .= �k �= �k+1 = . . .= �n = b,
for a fixedk, such that, 1�k <n. It proves that the set
Y is an FDS for this problem.
Ref. [19] proves that the setF = (EQ× Y ) ∪ T ⊂

A(G)×A(G) contains an optimal solution of the or-
dered 2-median problem in any network for any choice
of �-weights.
Ref.[10] gives an FDS for the single facility ordered

median problem with general node weights (thew-
weights can be negative). Moreover, for the case of
a directed network with non-negativew-weights, it
proves that there is always an optimal solution inV.
However, none of these papers deals with the gen-

eral case of the multifacility ordered median problem.

In fact, these papers impose very restrictive hypothe-
ses such that their respective results cannot be ex-
tended any further. Indeed, only[13] and[11] consider
p-facility problems for anyp>2, although for partic-
ular cases:[13] when the�-weights are given in non
increasing order and[11] when the�-weights satisfy
a = �1 = . . . = �k �= �k+1 = . . . = �n = b, for some
k,1�k <n.

2. On the exponential cardinality of FDS for the
p-facility ordered median problem

In this section we prove that there is no polynomial
size FDS for the general orderedp-median problem
even on path networks. In order to do that we consider
a path graphGwhereV={v1, . . . , v2p}, beingpa fixed
natural number,v1=0, v2=2, v2i−1=v2i−2+M and
v2i=v2i−1+2i , for i=2, . . . , p, andM=4

∑p
i=1 2

i+1
(a sufficiently large number) (seeFig. 1).
Thew-weights associated to the nodes are assumed

to be equal to one and the�-weights are given as
follows:

�1 = 0, �2 = �3 = 2p, �4 = p and

�i = 22p + 1

22p+1 (�i−2 + �i−1),

for i = 5, . . . ,2p. (2)

Under these conditions our goal is to findp points
on A(G), Xp = {x1, . . . , xp}, solving the following
problem:

min
Xp⊆A(G)

F (Xp) : =
2p∑
i=1

��i d(vi, Xp), (3)

where� is a permutation of{1, . . . ,2p}, such that,
�k <�l if d(vk,Xp)�d(vl, Xp) for each k, l ∈
{1, . . . ,2p}. (In this case, we say that the�-weight
��i is assigned (allocated) to the nodevi .)

Remark 2.1. Notice that, the�-weights defined in (2)
satisfy the relationships:

2max{�i−2, �i−1}>2�i > �i−2 + �i−1,

for all i = 5, . . . ,2p, (4)

2�4 = �2 = �3> �1 = 0, (5)

2�2> �4 + �5 + �8. (6)
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Fig. 1. Illustration of the graph in Section 2.

Moreover, the components of the vector� =
(�1, . . . , �2p) satisfy the following chain of inequali-
ties:

�2 = �3> . . .> �2p−3> �2p−1> �2p > �2p−2

> �2p−4> . . .> �4> �1 = 0.

Therefore

(i) �2j+1> �2(j+1)+1, for j = 1, . . . , p − 2 (the
sequence of�-weights with odd indexes (>1) is
decreasing).

(ii) �2(j+1) > �2j , for j = 2, . . . , p − 1 (the se-
quence of�-weights with even indexes (>2) is
increasing).

(iii) �2j−1> �2i , for any i, j ∈ {2, . . . , p} (a �-
weight with odd index (>1) is always greater
than any other with an even index (>2)).

(iv) �2j < �k, if k >2j , j >1 and �2j+1> �k, if
k >2j + 1, j�1.

We will prove that the optimal policy to solve Prob-
lem (3) is to locate a service facility on each edge
[v2i−1, v2i] for i = 1, . . . , p and to assign�i to vi for
i = 1, . . . ,2p.

Lemma 2.1. If Xp = {x1, . . . , xp} is an optimal so-
lution of Problem(3) then xi ∈ [v2i−1, v2i] for i =
1, . . . , p.

Proof. First, we prove that the nodesv2i and v2i+1
for i = 1, . . . , p, are not covered by the same service
facility. Suppose on the contrary that there existsj ∈
{1, . . . , p}, such that,v2j andv2j+1 are served by the
same service facilityx ∈ Xp. This implies that the fol-
lowing terms would appear in the objective function:

��2j d(v2j , x)+ ��2j+1d(v2j+1, x).

Notice thatd(v2j , x)+ d(v2j+1, x)�M. Moreover

1. If both�2j and�2j+1 are different from 1, we have
that��2j ��4, ��2j+1��4, and at least one of these
inequalities is strict.

2. If �2j=1, thend(v2j+1, x)�M/2. In a similar way,
the case�2j+1 = 1 implies thatd(v2j , x)�M/2.
In all cases

��2j d(v2j , x)+ ��2j+1d(v2j+1, x)>
M − 1

2
�4

= 2�4

p∑
i=1

2i = �2

p∑
i=1

2i .

The inequality above contradicts the optimality ofXp.
Indeed, considerX′

p = {x′
1, . . . , x

′
p} such thatx′

i is
located at the midpoint of the edge[v2i−1, v2i] for
i = 1, . . . , p. Then, since�2��i for i = 1, . . . ,2p,
we have thatF(X′

p)��2
∑p
i=12

i . Therefore,v2i and
v2i+1 for i=1, . . . , p, can not be covered by the same
service facility.
Hence, in what follows, we can assume without loss

of generality that each service facilityxi covers the
demand ofv2i−1 andv2i for i = 1, . . . , p.
The fact thatxi ∈ [v2i−1, v2i] follows directly

from the isotonicity property of the ordered median
objective with nonnegative�-weights (see Theo-
rem 1 in [5]). Indeed, ifxi /∈ [v2i−1, v2i] for somei,
i = 1, . . . , p, we movexi to its closest node in the
interval [v2i−1, v2i], the new vector of distances of
{v1, . . . , v2p} from the servers is smaller than the old
vector. �

Remark 2.2. Since all thew-weights are equal to one,
by symmetry arguments and without loss of general-
ity, in what follows we only consider solutions of this
problem satisfying thatd(v2i−1, xi)�d(v2i , xi) for
i=1, . . . , p, and consequently, by the structure of the
graph,d(v2i , xi)�d(v2i+2, xi+1) for i=1, . . . , p−1.
Hence,

(i) �2i−1<�2i for i = 1, . . . , p,
(ii) �2i <�2i+2 for i = 1, . . . , p − 1.

The above assertions imply that�2p=2p. Moreover,
by Lemma 2.1 and for the sake of the readability, we
can represent the graph ofFig. 1as a graph with only
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Fig. 2. The new representation of the graph where�2i >�2i−1, for i = 1, . . . , p and�2i+2>�2i , for i = 1, . . . , p − 1.

p edges where the edges with lengthM are omitted
(seeFig. 2).

Theorem 2.1. If Xp is an optimal solution of Problem
(3) then��i = �i for i = 1, . . . ,2p.

Proof. First, we prove that�1 must be assigned to
v2i−1 for some i, i = 1, . . . , p. Indeed, if �2i = 1
for some i, i = 1, . . . , p then, by Remark 2.2.i,
�2i−1<1. However, this is impossible because
�2i−1 ∈ {1, . . . ,2p}.
Second, by Lemmas A.1 and A.2, fork= 1, . . . , p,

we have that�2k is assigned tov2i for somei, i =
1, . . . , p. Moreover, Remark 2.2(ii), implies that�2i=
2i, (i.e.�2i is assigned tov2i) for i=1, . . . , p. There-
fore, using a recursive argument and Remark 2.2(i),
we obtain that�1=1 (i.e.�1 is assigned tov1), �3=3
and so on. Thus, the result follows.�

Remark 2.3. The above result has been proven as-
suming that|v2i+1−v2i+2|=2|v2i−1−v2i |. However,
the reader may notice that the result also holds when-
ever|v2i+1 − v2i+2|�2|v2i−1 − v2i |.

In order to disprove the polynomial cardi-
nality of any FDS for the multifacility ordered
median problem, we consider the graphG of
Fig. 1 (assume thatp is even). LetP = {1, . . . , p}
and J = {j1, j2, . . . , j p

2−1, j p2
} ⊆ P , such that,

1=j1<j2< . . .< jp
2−1<jp2

=p. On the graphGwe

formulate the following(p2 )-facility ordered median
problem:

min
Xp

2
⊆A(G)

2p∑
i=1

�′
�iw

′
id(vi, Xp2

), (7)

where�′ = (0, . . . ,0, �1, . . . , �p), such that,�i is de-
fined by (2) for i = 1, . . . , p, w′

2j−1 = w′
2j = 1 for

eachj ∈ J andw′
2j−1 = w′

2j = 0 for eachj ∈ P \J .
Moreover, since

w′
2j−1d(v2j−1, Xp

2
)= w′

2j d(v2j , Xp2
)= 0∀j ∈ P \J,

the first p positions of the ordered sequence of
weighted distances between each node and its
service facility are given byw′

2j−1d(v2j−1, Xp
2
),

w′
2j d(v2j , Xp2

) with j ∈ P \J . (Indeed, these posi-
tions are always zeros.) Thus, we can assume without
loss of generality that the�-weights allocated tov2j−1
andv2j for any j ∈ P \J are the firstp components
of the vector�′, that is, 0.
Notice that the nodesv2j−1 andv2j ∀j ∈ P \J are

not really taken into account in the objective value
becausew′

2j−1 = w′
2j = 0. Thus, using Lemma 2.1,

this problem reduces to locatep/2 service facilities
on a graph withp/2 edges. Indeed, if we consider

V ′ =
p
2⋃

i=1,ji∈J
{v2ji−1, v2ji } : =

p
2⋃
i=1

{v′2i−1, v
′
2i}
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and the path graphG′ induced by the set of nodesV ′,
Problem (7) can be reformulated as

min
Xp

2
⊆A(G′)

p∑
i=1

��i d(v
′
i , Xp2

). (8)

Observe that the components of the vector� =
(�1, . . . , �p) coincide with the firstp entries of (2)
and therefore they satisfy (4)–(6). In addition,�i ∈
{1, . . . , p} and�i <�j if d(v′i , Xp2 )�d(v

′
j , Xp2

) (the
w-weights are all equal to one).

Theorem 2.2. If Xp/2 is the optimal solution of Prob-
lem (7) then xi = v2ji−1 + zi with z1 = 1 and zi =
2ji−1 − zi−1 for i = 2, . . . , p/2.

Proof. To prove this result we consider the equiva-
lent formulation of Problem (7) given in (8). Applying
Theorem 2.1 and Remark 2.3, we get that the�-weight
allocated to the nodev′i is �i for i = 1, . . . , p.
In addition, the solutionXp

2
satisfies the relation-

shipd(v′2i , xi)=d(v′2i+1, xi+1) for i=1, . . . , p/2−1.
Indeed, since�2i and �2i+1 are assigned tov′2i
and v′2i+1, respectively, for i = 1, . . . , p/2 − 1,
then d(v′2i , xi)�d(v′2i+1, xi+1). Moreover, xi+1
must be located as close as possible tov′2i+1 be-
cause �2i+1> �2i+2, which in turn implies that
d(v′2i , xi)= d(v′2i+1, xi+1).
Next, we prove thatd(v′1, x1)=1. Notice that, by Re-

mark 2.2, we have thatd(v′1, x1)�1. If d(v′1, x1)<1
then we would movex1 towardsv′2 a small enough
amount,�. This movement would allow us to move
xi towardsv′2i−1 for any even indexi = 2, . . . , p/2,
andxj towardsv′2j for any odd indexj = 2, . . . , p/2
by the same amount�; without any reassignment of
the �-weights. These movements would produce the
following change in the objective function:

�


−(�2 − �1)+

p
2∑
k=2

(−1)k−1(�2k−1 − �2k)


 .

This amount is negative because−(�2−�1) is negative
and {�2k−1 − �2k}k�2 is a decreasing sequence of
positive values, that is,�2k−1−�2k > �2k+1−�2k+2>0
for k=1, . . . , p/2. However, this is not possible since
Xp

2
is optimal. Therefore, we obtain thatx1 = v′1 +

1 and thatXp
2
is the unique solution satisfying that

d(v2i−1, xi)�d(v2i , xi) for i=1, . . . , p.(See Remark
2.2.) Finally, sinced(v′2i , xi)= d(v′2i+1, xi+1) for i =
1, . . . , p/2− 1, the result follows. �

Our next result proves that there is no polynomial
size cardinality FDS for the multifacility ordered me-
dian problem. The proof consists of building a fam-
ily of O(nn) problems on the same graph with differ-
ent solutions (each solution contains at least one point
not included in the remaining),n being the number of
nodes.

Theorem 2.3. There is no polynomial size FDS for
the multifacility ordered median problem.

Proof. Consider Problem (7), by Theorem 2.2 and
Remark 2.2, for each choice of the setJ ⊆ P ,
we have an unique optimal solution satisfying that
d(v2i−1, xi)�d(v2i , xi) for i = 1, . . . , p, such that,
the service facility located on the edge[v2p−1, v2p]
has a different location, recall thatjp/2 = p. Thus,
since there are

(
2p−2
p
2−2

)
different choices of the setJ,

any FDS for the considered problem contains at least(
2p−2
p
2−2

)
elements.

Therefore, we have found a family of problems for
which a valid FDS is at least of orderO(nn) wheren
denotes the number of nodes (recall that in our case
n= 2p). �

Remark 2.4. Problem (7) is formulated based on the
concrete� given in (2). Nevertheless, a detailed read-
ing of the proofs shows that any� satisfying (4)–(6)
would be also valid.

3. Concluding remarks

This paper proves that polynomial size FDS can-
not exist for the multifacility ordered median problem.
However, it is still an open question whether polyno-
mial size FDS may exist for the convex version of this
problem (�-weights given in non-decreasing order).

Acknowledgements

The authors would like to thank professor Arie
Tamir for his valuable comments on an earlier version



J. Puerto, A.M. Rodríguez-Chía / Operations Research Letters 33 (2005) 641–651 647

of this paper, as well as to an anonymous referee for
his careful reading of the manuscript.

Appendix A.

Lemma A.1. If Xp is an optimal solution of Problem
(3) then for k = 2, . . . , p, �2k is assigned tov2i for
some i, i = 1, . . . , p.

Proof. Suppose on the contrary that�2k is assigned
to v2j−1 for some j, j = 1, . . . , p. We can assume
without loss of generality that 2k is the maximum
possible even index of a�-weight assigned tov2j−1
with j = 1, . . . , p. Recall thatk must be less thanp
since�2p = 2p (see Remark 2.2). In what follows we
distinguish two cases depending on the type of node
where�2k+1 has been assigned to.

Case1: �2k+1 is assigned tov2j ′ for somej ′, j ′ =
1, . . . , p.
By Remark 2.2(i) we have that�2j >�2j−1 = 2k.

Thus, by Remark 2.1(iv), we must have that
��2j > ��2j−1 = �2k. Hence, sinceXp is optimal,
xj must be located as far as possible fromv2j−1.
Besides, since�2j−1 = 2k <2k + 1 = �2j ′ then
d(v2j−1, xj )�d(v2j ′ , xj ′). Therefore, we have that
d(v2j−1, xj ) = d(v2j ′ , xj ′)and we can reassign the
�-weights, so that�2k is assigned tov2j ′ and�2k+1 to
v2j−1.
Case2: �2k+1 is assigned tov2j ′−1 for somej ′,

j ′ = 1, . . . , p.
Assume that d(v2j−1, xj ) �= d(v2j , xj ) and

d(v2j ′−1, xj ′) �= d(v2j ′ , xj ′). Under this assump-
tion, we can movexj and xj ′ towardsv2j and v2j ′ ,
respectively, by the same small enough amount,
�, without any reassignment of the�-weights (see
Fig. 3(a)).This is possible because 2k + 2= �2j ′′ for
somej ′′, j ′′ = 1, . . . , p (recall that�2k is the maxi-
mum index of a�-weight assigned to a node with odd
index) andd(v2j ′−1, xj ′) as well asd(v2j−1, xj ) are
strictly smaller thand(v2j ′′ , xj ′′). These movements
imply the following change in the objective function:

�(�2k + �2k+1 − ��2j − ��2j ′ ).

This amount is negative. Indeed, since�2j >2k + 1
and �2j ′ >2k + 1, by Remark 2.1(iv), we get
��2j + ��2j ′ >2�2k+2 and, by (4), we have that

2�2k+2> �2k + �2k+1. This is a contradiction because
Xp was an optimal solution.
In what follows, we study the casesd(v2j−1, xj )=

d(v2j , xj ) andd(v2j ′−1, xj ′)= d(v2j ′ , xj ′).
Case2.1: d(v2j ′−1, xj ′)= d(v2j ′ , xj ′).
Since�2j ′−1 = 2k + 1 we can assume without loss

of generality that�2j ′ =2k+2. Now, since�2k+1 and
�2k+2 have been already assigned and, by Remark
2.2(i), �2j >2k we get that�2j >2k + 2= �2j ′ . This
means, by Remark 2.2(ii), thatj > j ′. Moreover, since
�2j >2k then, by Remark 2.1(iv),��2j > ��2j−1 =�2k.
Hence,xj must be located as far as possible from
v2j−1 becauseXp is optimal. Besides, the relation-
ship �2j−1 = 2k <2k + 1 = �2j ′−1 implies that
d(v2j−1, xj )�d(v2j ′−1, xj ′). Therefore, we obtain
that d(v2j−1, xj ) = d(v2j ′−1, xj ′). This permits re-
assigning the�-weights so that�2k is assigned to
v2j ′−1, �2k+1 to v2j ′ and �2k+2 to v2j−1 (seeFig.
3(b)). However, this allocation induces a contradiction
because 2k is the maximum even index of a�-weight
assigned to a node with odd index.
Case2.2:d(v2j−1, xj )=d(v2j , xj ). The analysis of

this case is analogous to the Case 2.1 and also induces
a contradiction.
After this case analysis, we conclude that the op-

timal assignment of the�-weights satisfies that each
�2k for anyk = 2, . . . , p, is allocated tov2i for some
i, i = 1, . . . , p. �
The result above describes the optimal assignment

of the�-weights with even index,k >2. However, it is
still missing the case�2. The following result analyzes
this case:

Lemma A.2. If Xp is an optimal solution of Problem
(3) then�2 must be assigned tov2.

Proof. First, notice that if�2 were assigned tov2i
for somei, i = 1, . . . , p, then by Remark 2.2(ii) and
since�1 is already assigned to av2j−1 for some j,
j = 1, . . . , p, we would have thati = 1.

In order to prove the result, we proceed by con-
tradiction assuming that�2 is assigned tov2j−1 for
somej, j=1, . . . , p. Therefore, since by LemmaA.1,
for k = 2, . . . , p, �2k is assigned tov2i for some i
with i = 1, . . . , p, and�2 is assigned tov2j−1 then
there exists only onejo ∈ {1, . . . , p} such that�2jo−1
is assigned to a nodev2i for some i, i = 1, . . . , p.
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Fig. 3. Illustration of Lemma A.1.

Fig. 4. Illustration of Lemma A.2.

Depending on the value ofjo, we distinguish the fol-
lowing cases:
Case1: jo = 2 (seeFig. 4(a)).
If �3 is assigned tov2i for some i, i = 1, . . . , p,

then, by Remark 2.2(ii) and Lemma A.1,�3 must be
assigned tov2 (i=1) and�4 to v4. By Remark 2.2(i),
�1<3 and�3<4 then�1�2 and�3�2. Therefore,
�1 is assigned either tov1 or v3 and the same occurs
with �2. In any case, tominimize the objective function
we must have thatd(v1, x1) = d(v2, x2) = d(v3, x3)
and this implies that we can reassign the�-weights
such that�1 goes tov1, �2 to v2 and�3 to v3. Since
the objective value does not change, we get the thesis
of the Lemma.
Case2: jo = 3 (seeFig. 4(b)).
If �5 is assigned tov2i for somei, i=1, . . . , p, then,

by Remark 2.2(ii) and Lemma A.1,�4 must be as-
signed tov2, �5 tov4 and�2i tov2i for anyi=3, . . . , p.
Since�4, �5 and�6 have been already allocated and
Remark 2.2(i) ensures that�1<4, �2<5 and�3<6
then�1�3, �3�3 and�5�3. Moreover

(i) Since �4< �5 then d(v1, x1)�d(v3, x2). (Other-
wise the objective function may decrease). Indeed,
if d(v1, x1)> d(v3, x2) we movex1 and x2 to-
wardsv1 and v4, respectively, such that,x′

1 and

x′
2, the new locations ofx1 and x2, satisfy that
d(v1, x

′
1) = d(v3, x2) andd(v3, x′

2) = d(v1, x1).
This movement induces the following change in
the objective function:

(d(v1, x1)− d(v3, x2))(�4 − �5)<0,

what contradicts the optimality ofXp.
(ii) Since�3�3, �5�3 and�2 = 4,Xp must satisfy

that d(v2, x1)�d(v3, x2) and d(v2, x1)�d(v5,
x3). In addition, we have by construction that
d(v2, x1)�2 thend(v3, x2)�2 andd(v5, x3)�2.
This allows us to use the same arguments of Case
2(i) to prove thatd(v3, x2)�d(v5, x3) because
�5> �6.

Therefore,�1 must be assigned tov1, �2 to v5 and
�3 to v3. In addition, since�1, �2, �3, �4, �5, �6 have
been already assigned and�8 is assigned tov8; Remark
2.2(i) implies that�7 is assigned tov7. Repeating this
argument for anyi >4 we have that�2i−1 is assigned
to v2i−1. Thus,�2i−1 = 2i − 1 and�2i = 2i for any
i = 4, . . . , p.
This assignment of the�-weights implies that

d(v2i , xi) = d(v2i+1, xi+1) for any i = 3, . . . , p − 1.
Indeed, since�2i = 2i <2i + 1 = �2i+1 then
d(v2i , xi)�d(v2i+1, xi+1), and since�2i+1> �2i+2
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Fig. 5. Illustration of Case 4.

we deduce thatxi+1 is located as close as possible
to v2i+1, i = 3, . . . , p − 1. Hence, it implies that
d(v2i , xi)= d(v2i+1, xi+1) for any i = 3, . . . , p − 1.
Moreover, with this assignment of the�-weights

and since, by (6), 2�2> �4+ �5+ �8 then the optimal
location forx1, x2 andx3 must be:x1 = v1, x2 = v3,
x3 = v5.
However, this is a contradiction because we will

prove that the above configuration ofXp does not
provide an optimal solution of Problem (3). Indeed,
movex1, x2 andx3 to the new positionsx′

1, x
′
2 andx

′
3,

respectively, wherex′
1=v1+1,x′

2=v3+1, andx′
3=v5+

3. Using the conditiond(v2i , xi)= d(v2i+1, xi+1) for
any i=3, . . . , p, this movement allows us to displace
three units length: (1)xi towardsv2i−1 for any even
indexi=4, . . . , p and (2)xj towardsv2j for any odd
index j = 4, . . . , p; without any reassignment of the
�-weights corresponding to these nodes. Therefore,
these movements produce the following change in the
objective function:

+ �1 + �2 + �3 + �4 − �5 − 3�6 − 3(�7 − �8)
+ 3(�9 − �10)− 3(�11− �12)+ . . . .

We prove that this amount is negative. Indeed, by the
definition of the�-weights, see (2) and (4)–(6), they
satisfy that+�1+�2+�3+�4−�5−3�6 is negative.
Besides,

−3(�7 − �8)+ 3(�9 − �10)− 3(�11− �12)+ . . .
is negative because the sequence�7− �8, �9− �10, ...
is decreasing. This fact contradicts the optimality of
Xp since the objective function decreases.

Case3: jo = 4. The proof is similar to the one in
Case 2, and therefore it is omitted.
Case4: jo >4 (seeFigs. 5and6).
Using Remark 2.2(ii), Lemma A.1 and a similar

argument to that used in Case 2(i),�1 must be assigned
to v1, �2 to v3, �2i+2 to v2i for i = 1, . . . , jo − 2,
�2i−3 to v2i−1 for i = 3, . . . , jo − 2, �2jo−3 to v2jo−3,
�2jo−5 to v2jo−1, �2jo−1 to v2jo−2, and �i to vi for
i = 2jo, . . . ,2p.
Moreover, notice that,��2i−1> ��2i for i >1.

Hence, following a similar argument to the one in
Case 2, we obtain thatd(v2i , xi) = d(v2j−1, xj )

whenever�2j−1 − �2i = 1.
For this assignment of the�-weights, using (2)

and (4)–(6), the optimal location ofx1, x2, x3, x4
and x5 must be x1 = v1, x2 = v3, x3 = v5, and
either

1. x4 = v7 + 4 andx5 = v9 + 2, if jo = 5 (Fig. 5)

or

2. x4 = v7 + 2 andx5 = v9 + 4, if jo >5 (Fig. 6).

However, this is a contradiction because we will
prove that the above configuration ofXp does not
provide an optimal solution of Problem (3). Movex1,
x2, x3, x4 andx5 to the new positionsx′

1, x
′
2, x

′
3, x

′
4

andx′
5, respectively, wherex

′
1 = v1 + 1, x′

2 = v3 + 1,
x′
3 = v5 + 4, and

1. x′
4 = v7 + 4 andx′

5 = v9 + 3, if jo = 5 (Fig. 5).
2. x′

4 = v7 + 3 andx′
5 = v9 + 4, if jo >5 (Fig. 6).
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Fig. 6. Illustration of Case 4.

These displacements permit us to movexi towards
either v2i−1 or v2i for i = 6, . . . , p without any re-
assignment of their corresponding�-weights. (This is
possible using the conditiond(v2i , x′

i )= d(v2j−1, x
′
j )

when�2j−1 − �2i = 1.) The change of the objective
function is as follows:
(i) If jo = 5

+ �1 + �2 + �3 + �4 + �5 − 4�8 − �10 − (�11
− �12)+ (�13− �14)− (�15− �16)+ . . . .

By (2) and (4)–(6), we have that+�1+�2+�3+�4+
�5 − 4�8 − �10 is negative (by the definition of the�-
weights). Besides,−(�11−�12)+(�13−�14)−(�15−
�16)+ . . . is negative because the sequence�11− �12,
�13− �14, �15− �16,. . . is decreasing.
(ii) If jo >5

+ �1 + �2 + �3 + �4 + �5 − 4�8 − �10

+
∑

{j�0,7+6j<2jo−3}
(−1)j+1 · 0 · (�7+6j − �12+6j )

+
∑

{j�0,9+6j<2jo−3}
(−1)j+14(�9+6j − �14+6j )

+
∑

{j�0,11+6j<2jo−3}
(−1)j+1(�11+6j − �16+6j )

+ r(−1)jr (�2jo−3 − �2jo−1)+
p−1∑
j=jo

t (−1)jt+(j−jo)

× (�2j+1 − �2j+2),

where

t =
{0, if ∃jt such that 2jo − 3= 7+ 6jt ,
4, if ∃jt such that 2jo − 3= 9+ 6jt ,
1, if ∃jt such that 2jo − 3= 11+ 6jt .

r =
{0, if ∃jr such that 2jo + 1= 7+ 6jr ,
4, if ∃jr such that 2jo + 1= 9+ 6jr ,
1, if ∃jr such that 2jo + 1= 11+ 6jr .

In case (i) we proved that+�1 + �2 + �3 + �4 +
�5 − 4�8 − �10 is negative. Moreover,

+
∑

{j�0,9+6j<2jo−3}
(−1)j+14(�9+6j − �14+6j )

+
∑

{j�0,11+6j<2jo−3}
(−1)j+1(�11+6j − �16+6j )

+ r(−1)jr (�2jo−3 − �2jo−1)

+
p−1∑
j=jo

t (−1)jt+(j−jo)(�2j+1 − �2j+2)

is negative because we can decompose the expression
above in different sums, where each one of them con-
stitutes a decreasing sequence in absolute value with
alternate signs and being its first element negative.
Since in all the possible cases we get a contradic-

tion, the initial hypothesis that�2 is assigned to a ver-
tex with odd index is inconsistent. Therefore, using
Lemma A.1 we conclude that�2 can only be assigned
to v2. �
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