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Abstract

We study finite dominating sets (FDS) for the ordered median problem. This kind of problems allows to deal simultaneously
with a large number of models. We show that there is no valid polynomial size FDS for the general multifacility version of
this problem even on path networks.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction In the last years, a new type of function has attracted
_ _ ~ the attention of locators: the ordered median objective
~ Network location models have been widely studied function. The corresponding ordered median problem
in the literature as can be seen in several textbooks 5jjows a common algebraic analysis for a wide range
[1,4,8,12] Since the seminal paper by Hakirfif],  of location models since many of the classical prob-
much of this work has been devoted to |dent|fy finite lems in location theory can be formulated as some
sets of points where an optimal solution of a problem of its particular instances. In the literature of loca-
must belong to. These sets, caligwite dominating  tion analysis, we can find a number of results con-
sets(FDS), reduce the search for an optimal solution cerming the ordered median problem, for example in
of a problem to a finite set of candidates. the continuous case, characterizations of the optimal
solution set and some algorithms have been obtained
* The research of the authors is partially financed by Spanish in [5,6,14—18] On networks, finite dominating sets
research Grants BFM2001-2378, BFM2001-4028, BFM2004-0909 gre known for particular instances of the problem, see
a”f&?é‘;gi':dliﬁé-amhor el +34.954557540: [10,11,13,19] Recently, also the discrete version of
fax: +34 95 4622800. ' this model has been .stud|ed [®,3]. (Th|s objective
E-mail addressespuerto@us.eJ. Puerto), function was already introduced ja1] in the context
antonio.rodriguezchia@uca.é4.M. Rodriguez-Chia). of multi-criteria decision making.)
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Nevertheless, it has been an open problem whether

polynomial size FDS exist for the general version of
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For agivend= (41, ..., A,), vector of non-negative
components, called-weights, thep-facility ordered

this problem even on path networks. In this paper, we median function (the orderggtmedian function) on

show that such sets do not exist.
An overview of the literature, involving characteri-

zations of FDS, shows a lot of papers that succeed in

finding this type of sets for different versions of lo-
cation models. Ref[9] is an excellent paper on this

subject that characterizes FDS for a large number of
location problems. However, we are not aware of any

G is defined as
F; (X)) : :Z ;Liw/;id(vlg[, Xp)
i=1

n
: :Z }meid(v,’,Xp),

i=1

1)

paper that states a negative result concerning existence

of a polynomial size FDS for a given problem.

where ¢ is a permutation of{l1,...,n} such that

The main result in this paper proves that there exists ¢; < oy if w;d(v;, X)) <wid(vi, X)) for all j, k €

a path graph witm nodes satisfying the following
property: there is a family o (n") orderedz-median

{1,...,n}.
The A-weights are the parameters that define the ob-

problems defined on the above path graph, such that:jective function and depending on the values of these
(1) each problem has a unique optimal solution and (2) parameters we obtain different problems. In fact, the

each optimal solution contains an element (facility) not

included in any other solution. Therefore, in general,

the multifacility ordered median problem cannot have

polynomial size FDS.
To introduce the problem formally, some notation is
needed. LeG=(V, E) denote a path graph wheve=

orderedp-median problem allows to model the
facility versions of the mediani{ = 1, Vi), center
(=21, =0, Vi # n), a-centdian §, =1, 4; =
o, Vi # n), kcentrum ¢; =1, fori =n — k +
1,....,nand4; =0fori=1,...,n — k), k-trimmed
p-mean location model (we omit th% smallest and

{v1,...,v,} is the set of nodes (demand points) and g largest weighted distances, to simplify assukrie
E the set of edges. Suppose without loss of generality even, 11 = ... = 1« = 0, A==l k=1,
2 2 2

that the nodes are points on the real line, satisfying ;

v1< ... <v,. Therefore, we denote by;, v; + 1]
the edge that joins the nodes andv; + 1 for i =
1,...,n— 1. Let A(G) be the intervalv1, v,], then
the distance from two pointsandy in A(G) is simply
d(x,y)=|x — y|. In the same way, the distance from

a node to a set witlp points, X, = {x1,...,x,} C

A(G), is defined as

dw,Xp)= min d(v,x;))=_ min |x; —vl.
=1,...,p =

Notice thatA(G) is a metric space whose distance
function is induced by the edge lengths, §2@].

We consider a set of non-negative weights
{wi, ..., w,}, called w-weights, where the weight
w; is associated to the node and represents the
intensity of the demand at this node, foe 1, ..., n.

Let f be a permutation of the sét, ..., n} satis-
fying that

wp,d(vp,, Xp) Swp,d(vp,, Xp)
<... gw[;nd(vﬁn, Xp).

ki1 == A, = 0), etc. Notice that we do not
impose any assumption on the monotonicity of the
weights, therefore we do not restrict to the convex nor
the concave cases, sgs].

Although we have already used the concept of FDS,

in what follows, we give its formal definition.

Definition 1.1. Let G = (V, E) be a graph withn
nodes and positive edge lengths. Let, ..., w, be
non-negative reals andl= (11, ..., 4,) a vector of
non-negative components. A finite subXetf A(G) is

an FDS, for the multifacility ordered median problem,
if for any integerp andw-weights associated tq for
i=1,...,n,eitherw; or 0 there is an optimal solution,
X p, of the respective ordergeimedian problem, such
thatX, C X.

Obtaining an FDS for this model allows the de-
velopment of different types of algorithms to solve
it. Therefore, recently much effort has been devoted
to obtain FDS for the ordered median problems (see
[10,11,13,19). In the following, we recall several
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sets used to define FDS for particular instances of the
problem.

A point x € A(G) is in equilibrium with respect to
the nodesy, vy, v # vy, if: wi d (v, x)=w; d(vy, x).
It is important to realize that there may exist subedges
in equilibrium with respect to two nodes. We denote by
EQ the set consisting of the nodes®f the points in
equilibrium which are isolated and the extreme points
of the subedges in equilibrium. Moreover, we consider
the following sets:

Y={y e AG): wid(v;,y) =w;d(vj,2),
Vi, Vj S V, Z € EQ},

T ={X2=(x1,x2) € A(G) x A(G) : Fv,, v
served byx; andv,,, vy served byxy, such
thatw,d(v,, x1) = w,»d(v,7, x2) andwy
d(vs, x1) = wyed(vy, x2). Moreover, ifw, = w,
andw, = wy, then the slopes of the functions
d (v, -) andd(vy, -), in the edge that
x1belongs to, must have the same signsat
and the slopes of the functioagv,, -)
andd(vy, -), in the edge that, belongs to
must have different signs ap}.

Ref.[13] proves that fort1 > ... > 4, >0 the node set
V constitutes an FDS for the multifacility ordered me-
dian problem. For arbitrary non-negatiteveights, it
also obtains thaEQ is an FDS for the single-facility
ordered median problem.

Ref. [11] studies the multifacility ordered median
problem where thé-weights are defined as

a=M=...=p # hs1=...= Ay =b,
for a fixedk, such that, X k <n. It proves that the set
Y is an FDS for this problem.

Ref.[19] proves that the sef = (EQx Y)UT C
A(G) x A(G) contains an optimal solution of the or-
dered 2-median problem in any network for any choice
of 1-weights.

Ref.[10] gives an FDS for the single facility ordered
median problem with general node weights (ile
weights can be negative). Moreover, for the case of
a directed network with non-negative-weights, it
proves that there is always an optimal solutiorvin

However, none of these papers deals with the gen-
eral case of the multifacility ordered median problem.
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In fact, these papers impose very restrictive hypothe-
ses such that their respective results cannot be ex-
tended any further. Indeed, orjfi3] and[11] consider
p-facility problems for anyp > 2, although for partic-
ular casesf13] when thel-weights are given in non
increasing order anfl1] when thel-weights satisfy
a=M=...=M # My1=...= Ay = b, for some

k, 1<k <n.

2. On the exponential cardinality of FDS for the
p-facility ordered median problem

In this section we prove that there is no polynomial
size FDS for the general order@dmedian problem
even on path networks. In order to do that we consider
apath grapl@ whereV={vy, ..., vz}, beingpa fixed
natural numbern1 =0, vp=2, vy;_1=v2,_2+ M and
voi=vpi—1+2,fori=2, ..., p,andM=4%"_ 2'+1
(a sufficiently large number) (sdgg. 1).

Thew-weights associated to the nodes are assumed
to be equal to one and th&weights are given as
follows:

/11:0, )V2=/13=2p, /l4=p and

. 2741 ,
AP = W()»i—z + Zi—1),

fori =5,...,2p. (2)

Under these conditions our goal is to fipdpoints
on A(G), X, = {x1, ..., x,}, solving the following

problem:

2p
x,,@iﬂc;) F(X)): :,; Jod(vi, X ), (3)
whereg is a permutation of1, ..., 2p}, such that,

o <o if d(v, Xp)<d(v, Xp,) for eachk,l e
{1,...,2p}. (In this case, we say that theweight
/s, is assigned (allocated) to the node)

Remark 2.1. Notice that, thel-weights defined in (2)
satisfy the relationships:

2maxii_o, Ai_1} > 22 > Ji_o+ Ai_1,

foralli =5,...,2p, 4)
24=722=1723>71=0, (5)
202> 4+ J5+ 8. (6)
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op

V2p

Fig. 1. lllustration of the graph in Section 2.

Moreover, the components of the vector =
(A1, ..., A2p) satisfy the following chain of inequali-
ties:
Aa=723>...>lpp-3>lop_1>lop>Aop_2

> Aop—a>...>A4>711=0.

Therefore
(|) ;u2j+l > )u2(j+l)+l’ for J = 1, ey P — 2 (the

sequence of-weights with odd indexes>(1) is
decreasing).

(II) ;u2(j+1) > /12]', for Jj= 2,..., p—1 (the se-
guence ofl-weights with even indexes>(2) is
increasing).

(i) Zzj_1>/7z;, foranyi,j e {2,...,p} (ai-

weight with odd index ¢ 1) is always greater
than any other with an even index @)).

loj <A, it k>2j, j>1 and Azji1> A, if
k>2j+1,j>1.

(iv)

We will prove that the optimal policy to solve Prob-
lem (3) is to locate a service facility on each edge
[vzi—1,v9] fori=1,..., p and to assigi; to v; for
i=1...,2p.

Lemma 2.1. If X, = {x1,...,x,} is an optimal so-
lution of Problem(3) thenx; € [vg;_1, vo;] for i =
1...,p.

Proof. First, we prove that the nodas; andvy; 11
fori =1, ..., p, are not covered by the same service
facility. Suppose on the contrary that there exists
{1,..., p}, such thatp,; andvy; 1 are served by the
same service facility € X,. Thisimplies that the fol-
lowing terms would appear in the objective function:

}Lazjd(ija )C) + )“O'zjur]_d(ij-‘rla )C).
Notice thatd (v2;, x) + d(v2j41, x) > M. Moreover
1. Ifbotheoy; ando;, 1 are different from 1, we have

that)vgzj > Ja, /IGZM > /4, and at least one of these
inequalities is strict.

2. Ifo2;=1,therd(vzj41, x) > M/2. In asimilar way,
the caserp;;1 =1 implies thatd (vp;, x) > M/2.
In all cases

-1

2

Loy d (25, X) + /152_,.+1d(v2j+1, Xx) > a4

14 14
:2242 2 :)QZZ'.
i=1 i=1

The inequality above contradicts the optimalityXof.
Indeed, consideX’, = {x},...,x)} such thatx; is
located at the midpoint of the eddey; 1, vy;] for
i=1...,p. Then, sincelo>4; fori =1,...,2p,
we have thatF(X;,)gizzf’:lZf. Thereforevy; and
vir1 fori=1, ..., p, can not be covered by the same
service facility.

Hence, in what follows, we can assume without loss
of generality that each service facilityy covers the
demand ofvy;_1 andvy; fori =1,..., p.

The fact thatx; € [vp_1, v2;] follows directly
from the isotonicity property of the ordered median
objective with nonnegativei-weights (see Theo-
rem 1 in[5]). Indeed, ifx; ¢ [vz;_1, v2;] for somei,
i=1...,p, we movex; to its closest node in the
interval [vy;_1, vy;], the new vector of distances of
{v1, ..., vop} from the servers is smaller than the old
vector. [

Remark 2.2. Since all thav-weights are equal to one,
by symmetry arguments and without loss of general-
ity, in what follows we only consider solutions of this
problem satisfying that/(vy;_1, x;) <d(vy;, x;) for

i=1,..., p, and consequently, by the structure of the
graphd(vy;, x;) <d(v2i42, xi+1) fori=1,..., p—1.
Hence,

(I) 02i—1 <02 fori = 1,..., P,

(i) o9 <agiqpfori=1,...,p—1.

The above assertions imply that,=2p. Moreover,
by Lemma 2.1 and for the sake of the readability, we
can represent the graph leig. 1 as a graph with only
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U Uy
Do Ao,
U3 Uy
Aos—— Ao,
Us Ug
Aos————— Ay
V7 g
Aoy} Aoy
v21‘)—3 U?q—?
O2p-3] | )\‘7pr2
U2p—-1 Uap

p edges where the edges with lendthare omitted formulate the foIIowing(g)-faCility ordered median

(seeFig. 2. problem:

Theorem 2.1. If X, is an optimal solution of Problem x L

(3)thenlq, = 4; fori=1,...,2p. L, D e widi Xp), @)
2= i=1

Proof. First, we prove thatl; must be assigned to
vp;_1 for somei, i = 1,..., p. Indeed, ifay =1
for somei, i = 1,..., p then, by Remark 2.2.,
g2i-1 < 1. However, this is impossible because
o2i—1 €{1,...,2p}.

wherel' =(0,...,0, 1, ..., 4,), such that/; is de-

fined by (2) fori =1,..., p, w’zj_l = w’zj =1 for

eachj e J andw’zj_1 = w’zj =0 for eachj € P\J.
Moreover, since

Second, by Lemmas A.1 andA.2, fo=1, ..., p, L d(vei 1. X o) = wh d(ver Xp) = OV € P\J
we have thatiy is assigned tay; for somei, i = w2j-14(2j-1, Xg) = wp; d(vzj, Xp) J€P\J.
1,..., p. Moreover, Remark 2.2(ii), implies thap; = the first p positions of the ordered sequence of
2i, (i.e.Jp; is assigned toy;) fori =1, ..., p. There- weighted distances between each node and its

e SOt hat 1 (6.1 assigned g, gcs " SoTVice facity are given by, yd(j-s. Xy,
' wy.d(vz;, Xp) with j € P\J. (Indeed, these posi-
and so on. Thus, the result follows[J L4l 2 )
tions are always zeros.) Thus, we can assume without
loss of generality that thé-weights allocated top;_1
andvyp; for any j € P\J are the firstp components
of the vector//, that is, 0.

Notice that the nodesp; 1 andvy; Vj € P\J are
not really taken into account in the objective value
becausewy; , = wjy; = 0. Thus, using Lemma 2.1,
this problem reduces to locaje/2 service facilities
on a graph withp /2 edges. Indeed, if we consider

Remark 2.3. The above result has been proven as-
suming thatvy; 11 — vo; 42| =2|vy;—1 — v2;|. However,

the reader may notice that the result also holds when-
ever|vyi11 — v2i2| > 2lvai 1 — vzl.

In order to disprove the polynomial cardi-
nality of any FDS for the multifacility ordered
median problem, we consider the graph of
Fig. 1 (assume thap is even). LetP = {1, ..., p} 3
and J = {1, jz,...,j%_l, j%} C P, such that, V= U
1=j1<j2<...<jg_l<j%=p. On the grapls we =1 el

L4
2

(v2j-1, v2;) s = J (01 vin)
i=1
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and the path grapt’ induced by the set of nodés,
Problem (7) can be reformulated as

min
X p CAG)

Z fid (], X p). €)

Observe that the components of the vectore=
(A1, ..., Ap) coincide with the firstp entries of (2)
and therefore they satisfy (4)—(6). In additian, €
{1,....p}andg; <g; if d(v], Xg)éd(v;, X%) (the
w-weights are all equal to one).

Theorem 2.2. If X, > is the optimal solution of Prob-
lem (7) thenx; = vpj,_1 +z; Withzy =1 andz; =
2/t — 7 1 fori=2,...,p/2.

Proof. To prove this result we consider the equiva-
lent formulation of Problem (7) given in (8). Applying
Theorem 2.1 and Remark 2.3, we get thattheeight
allocated to the node/ is 4; fori =1,..., p.

In addition, the solutionXp satisfies the relation-
Shlpd(vzl,x,) d(v21+l, x,+1) fori=1,..., p/2—1.
Indeed, sincely and Jy4+1 are aSS|gned tovs,
and vy, 4, respectively, fori = 1,...,p/2 — 1,
then d(vy,, x;)) <d(vy 4, Xi+1). Moreover, x;i1
must be located as close as possiblevip, ; be-
cause Agi1+1> A2i+2, which in turn implies that
d(v’zl., Xj) = d(U/ZH_l, Xi+1)-

Next, we prove thai (v}, x1)=1. Notice that, by Re-
mark 2.2, we have thai(vy, x1) <1. If d(v}, x1) <1
then we would movex; towardsv, a small enough
amount,&. This movement would allow us to move
x; towardsvy, ; for any even index = 2 .., p/2,
andx; tOWB.I’dSvZJ for any odd indexj =2, ..., p/2
by the same amoun; without any reaSS|gnment of
the Z-weights. These movements would produce the
following change in the objective function:

)4
2
&l —G2— 20+ ) D a1 — A2
k=2

This amount is negative becauséi, — /1) is negative
and {/z—1 — Zx};>2 is a decreasing sequence of
positive values, that igpr—1— A2k > A2x+1—A2%42 >0
fork=1,..., p/2. However, this is not possible since
X% is optimal. Therefore, we obtain thai = v} +

1 and thath is the unique solution satisfying that

J. Puerto, A.M. Rodriguez-Chia / Operations Research Letters 33 (2005) 641—-651

d(vgi—1, x;) <d(vg;, x;) fori=1, ..., p.(See Remark
2.2.) Finally, sincel (vy;, xi) = d(vy; 4, Xi+1) fori =
1,..., p/2—1, the result follows. [J

Our next result proves that there is no polynomial
size cardinality FDS for the multifacility ordered me-
dian problem. The proof consists of building a fam-
ily of O(n") problems on the same graph with differ-
ent solutions (each solution contains at least one point
not included in the remainingi being the number of
nodes.

Theorem 2.3. There is no polynomial size FDS for
the multifacility ordered median problem

Proof. Consider Problem (7), by Theorem 2.2 and
Remark 2.2, for each choice of the sét C P,
we have an unique optimal solution satisfying that
d(vgi—1, x;) <d(vy,x;) fori =1,..., p, such that,
the service facility located on the edgey, 1, v2,]
has a different Iocation recall tha},,» = p. Thus,

since there ar different choices of the se};
any FDS for the conS|dered problem contains at least
(2” 2) elements.

Therefore, we have found a family of problems for
which a valid FDS is at least of ordér(n") wheren
denotes the number of nodes (recall that in our case
n=2p). O

Remark 2.4. Problem (7) is formulated based on the
concretel given in (2). Nevertheless, a detailed read-
ing of the proofs shows that anysatisfying (4)—(6)
would be also valid.

3. Concluding remarks

This paper proves that polynomial size FDS can-
not exist for the multifacility ordered median problem.
However, it is still an open question whether polyno-
mial size FDS may exist for the convex version of this
problem ¢-weights given in non-decreasing order).
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Appendix A.

LemmaA.l. If X, is an optimal solution of Problem
(3) then fork =2, ..., p, Ax is assigned tayy; for
someji=1...,p.

Proof. Suppose on the contrary tha; is assigned
to vp;_1 for somej, j =1,..., p. We can assume
without loss of generality thati2is the maximum
possible even index of a-weight assigned te»;_1
with j =1,..., p. Recall thatk must be less thap
sinceay, =2p (see Remark 2.2). In what follows we

X, was an optimal solution.

In what follows, we study the casé$vy;_1, x;) =
d(vzj, xj) andd(vojr—1, xj) =d(vojr, xjr).

Case2.1: d(UZj/_l, )Cj/) = d(vzj/, )Cj/).

Sincea,; 1 =2k + 1 we can assume without loss
of generality thatr>;» = 2k + 2. Now, sincelz;1 and
Ax+2 have been already assigned and, by Remark
2.2(i), 02 > 2k we get thalsp; > 2k +2=g5;. This
means, by Remark 2.2(ii), that- j’. Moreover, since
o2; > 2k then, by Remark 2.1(iv)%(,2_/. > /1(,2_,._1 =Ao.
Hence,x; must be located as far as possible from
v2;_1 becauseX, is optimal. Besides, the relation-
ship 621 = 2k <2k + 1 = opj—1 implies that
d(vzj-1,xj) <d(vpj—1,x;/). Therefore, we obtain
that d(v2j-1,x;) = d(vzj:_1, xjr). This permits re-

distinguish two cases depending on the type of node assigning thel-weights so thatly is assigned to

wherely11 has been assigned to.

Casel: A1 is assigned tay; for somej’, j’' =
1...,p.

By Remark 2.2(i) we have thaty; > 02;_1 = 2k.
Thus, by Remark 2.1(iv), we must have that
/lgzj >/le],71 = /. Hence, sinceX, is optimal,
x; must be located as far as possible fragy_;.
Besides, sincesy;_1 = 2k <2k + 1 = oy then
d(vzj-1,x;) <d(vj, x;). Therefore, we have that
d(vzj-1,x;) = d(vzjr, xj)and we can reassign the
/-weights, so thaty is assigned t@,; and/x 1 to
v2j—-1.

Case2: Jy41 is assigned tayj 1 for some ',
j'=1,...,p.

Assume thatd(vpj_1,x;) # d(v2;,x;) and
d(vpji—1,xj7) # d(vojr, xjr). Under this assump-
tion, we can movexr; andx; towardsvz; andvy;,
respectively, by the same small enough amount,
&, without any reassignment of theweights (see
Fig. 3(@)).This is possible becausé 2 2= g5~ for
some;”, j” =1,..., p (recall thatly is the maxi-
mum index of ai-weight assigned to a node with odd
index) andd (vp;_1, x;») as well asd(vz;-1, x;) are
strictly smaller thand(vp;, x;»). These movements
imply the following change in the objective function:

S(A2k + A2kt — Aoyy — Aayy)-

This amount is negative. Indeed, sineg; > 2k + 1
and oy >2k + 1, by Remark 2.1(iv), we get
/lej + Aaz,,/ >2lx+2 and, by (4), we have that

V21, Aoy tO v and Ay.2 to V21 (seeFig.
3(b)). However, this allocation induces a contradiction
because Ris the maximum even index of aweight
assigned to a node with odd index.

Case2.2:d(vzj-1, xj)=d(v2;, xj). The analysis of
this case is analogous to the Case 2.1 and also induces
a contradiction.

After this case analysis, we conclude that the op-
timal assignment of thé-weights satisfies that each
Ao foranyk =2, ..., p, is allocated tayy; for some
i,i=1,...,p. O

The result above describes the optimal assignment
of the /-weights with even index > 2. However, it is
still missing the casgé,. The following result analyzes
this case:

Lemma A.2. If X, is an optimal solution of Problem
(3) then A2 must be assigned to.

Proof. First, notice that ifi, were assigned tay;
for somei, i =1, ..., p, then by Remark 2.2(ii) and
since /1 is already assigned to &;_1 for somej,
j=1 ..., p, we would have that = 1.

In order to prove the result, we proceed by con-
tradiction assuming that; is assigned tay;_; for
somej, j=1,..., p. Therefore, since by LemmaA.1,
for k =2,..., p, Ay is assigned tap; for somei
with i =1,..., p, and /> is assigned tay;_1 then
there exists only ong, € {1, ..., p} such thatiy;, _1
is assigned to a nodey; for somei, i =1,..., p.
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Fig. 4. lllustration of Lemma A.2.

Depending on the value gf,, we distinguish the fol-
lowing cases:

Casel: j, = 2 (seeFig. 4(a)).

If A3 is assigned tavy; for somei, i =1,..., p,
then, by Remark 2.2(ii) and Lemma A.13 must be
assigned ta; (i = 1) and/4 to va. By Remark 2.2(i),
o1 <3 andos <4 theno1 <2 ando3 < 2. Therefore,
A1 is assigned either to; or vz and the same occurs
with 2. In any case, to minimize the objective function
we must have that (v, x1) = d(v2, x2) = d(v3, x3)
and this implies that we can reassign thaveights
such that/; goes tovs, 42 to v2 and A3 to v3. Since

the objective value does not change, we get the thesis

of the Lemma.

Case2: j, = 3 (seeFig. 4(b)).

If 15 is assigned toy; for somei,i=1, ..., p, then,
by Remark 2.2(ii) and Lemma A.14 must be as-
signed tavy, A5tovg and/y; tovy; foranyi=3, ..., p.

x5, the new locations ok; and xp, satisfy that
d(vy, x/l) = d(v3, x2) andd (vs, xé) = d(v1, x1).
This movement induces the following change in
the objective function:

(d(vy, x1) — d(v3, x2))(44 — A5) <0,

what contradicts the optimality of ,.

(if) Since3<3, 05<3 andoz = 4, X, must satisfy

that d(v2, x1) >d(v3, x2) and d(vo, x1) >d(vs,
x3). In addition, we have by construction that
d(v2, x1) <2 thend(vs, x2) <2 andd (vs, x3) < 2.
This allows us to use the same arguments of Case
2(i) to prove thatd(vs, x2) >d(vs, x3) because
A5 > Jg.

Therefore, A1 must be assigned ta, 4, to vs and
A3 to v3. In addition, sincely, A2, 13, A4, 15, g have
been already assigned aixis assigned tog; Remark

Since 4, /5 and Z¢ have been already allocated and 2.2(i) implies thatl; is assigned te7. Repeating this

Remark 2.2(i) ensures that <4, 62 <5 ando3 <6
theno1 <3, 03<3 andos < 3. Moreover

(i) Since A4 < 45 thend(v1, x1) <d(v3, x2). (Other-

wise the objective function may decrease). Indeed, d(vy;, x;) = d(vir1, x;i11) for anyi =3, ..

if d(vy, x1) >d(v3, x2) we movex; and xo to-
wardsv; and v4, respectively, such thak; and

argument for any > 4 we have thaty;_1 is assigned
to vg;—1. Thus,a2;_1 = 2i — 1 andagy; = 2i for any
i=4,...,p.

This assignment of thel-weights implies that
.p—1
Indeed, sinceoy = 2i<2i + 1 = agp;41 then
d(vai, x;) <d(v2i41, Xi+1), and since/z;11> 4242
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Fig. 5. lllustration of Case 4.

we deduce thak;,1 is located as close as possible
to vyi41, i = 3,..., p — 1. Hence, it implies that
d(vzi, x;) =d(v2iq1, xi41) foranyi =3,..., p — 1.

Moreover, with this assignment of theweights
and since, by (6), & > A4+ A5 + Ag then the optimal
location forxy, xo andxz must be:ix; = vy, x2 = v3,

X3 = Us.

However, this is a contradiction because we will
prove that the above configuration &f, does not
provide an optimal solution of Problem (3). Indeed,
movexy, x2 andxz to the new positions’, x5 andxs,
respectively, wherg;=v1+1, x,=v3+1, andvj=vs+
3. Using the conditior (vy;, x;) = d(vg;+1, xi+1) for
anyi =3, ..., p, this movement allows us to displace
three units length: (1); towardswvy;_1 for any even
indexi =4, ..., p and (2)x; towardsvy; for any odd
index j =4, ..., p; without any reassignment of the

A-weights corresponding to these nodes. Therefore,

Case3: j, = 4. The proof is similar to the one in
Case 2, and therefore it is omitted.

Cased4: j, > 4 (seeFigs. 5and6).

Using Remark 2.2(ii), Lemma A.1 and a similar
argument to that used in Case 2{i),must be assigned
to v1, Ao to w3, Ay towy; fori=1,...,j, — 2,
Joi—ztouvp_1fori=3, ..., j,—2,A2j,—-3t0v2;,_3,
22j,—5 10 v2j,_1, A2j,—1 t0 v2j,_2, and 4; to v; for
i=2jy,...,2p.

Moreover, notice that,As, ; > Ag, for i>1.
Hence, following a similar argument to the one in
Case 2, we obtain thatl(vy, x;) = d(v2j_1, x;)
whenevers,;_1 — 62 = 1.

For this assignment of thé-weights, using (2)
and (4)-(6), the optimal location of1, x2, x3, xa
and x5 must bex; = vy, x2 = v3, x3 = vs, and
either

these movements produce the following change inthe 1. x4 = v7 + 4 andxs = vg + 2, if j, =5 (Fig.5)

objective function:

+ A1+ A2+ A3+ Aa— is — 3lg — 3(A7 — Jg)
+ 3(Ag — A10) — 3(A11 — A12) +. ...

We prove that this amount is negative. Indeed, by the
definition of the/-weights, see (2) and (4)—(6), they
satisfy that+-41 + A2 + 13+ 14 — A5 — 316 iS negative.
Besides,

—3(A7 — Ag) +3(Ag — A10) — 3(A11 — 412) + ...

is negative because the sequenge- g, 19 — 410, ...
is decreasing. This fact contradicts the optimality of
X, since the objective function decreases.

or
2. x4 = v7+ 2 andxs = vg + 4, if Jo>5 (Fig. 6).

However, this is a contradiction because we will
prove that the above configuration &f, does not
provide an optimal solution of Problem (3). Move,
x2, X3, x4 andxs to the new positions}, x5, x5, x;
andxg, respectively, where] =v1 + 1, x5 =v3 + 1,
x5 =uvs5+ 4, and

1. xa =v7+4 andxé =g+ 3, if Jo = 5 (Flg 5)
2. xél =v7+3 andxé =vg + 4, if Jo>95 (Flg 6)



650 J. Puerto, A.M. Rodriguez-Chia / Operations Research Letters 33 (2005) 641—-651

T e
)\1H )\/1 )\1 I—H /\2
v U2 v U2
T2 )
Aod—— X A Fo—— N
U3 V4 /\ U3 Uy
A————— X Ao F——o—Xs
Us Vg Vs Vg
Tyq ‘LZI
As e {A10 As | ® {A10
U7 Ug U7 g
Ty Ts5
M| ° [A12 M| 14 (A2
Vg V10 Vg V10
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These displacements permit us to maydowards where
eithervg;_1 or vy; for i =6, ..., p without any re-
assignment of their correspondigveights. (This is 0, if 3j, suchthatg, —3=7+ 6/,
possible using the conditiaf(vy;, x) =d(v2; -1, x}) t= { 4, if 3j, such that 2, —3=9+ 6/,
whenaoy;_1 — o2 = 1.) The change of the objective 1, if 3j; suchthat3, —3=11+6j;.

function is as follows: 0, if 3j, suchthat2, + 1=7+ 6j,,

() If jo=5 r={4, if 3, such that g, +1=9+ 6/,
) ) ) . 1, if 3j, suchthat2, +1=11+ 6j,.
+ M+ A2+ 23+ Aa+ A5 — 4lg — 10— (A11

— 212) + (13 — 414) — (15— J16) + .. .. In case (i) we proved that iy + A2 + A3 + Ja +

As — 4g — 10 iS negative. Moreover,
By (2) and (4)—(6), we have thatl; + A2+ A3+ A4+

As — 4lg — A10 IS negative (by the definition of the

weights). Besides; (111 — A12) + (A13— A14) — (A15— + Z

J16) + . .. is negative because the sequeagce— /12, {7 >0.9+6j<2j,-3}

A13 — A14, A15 — A16,. .. IS decreasing.
(i) If j,>5

(=17 4(gs6; — A1a16))

+ Z (=17 (l11v6j — A16+6))
{j 20,1146/ <2j,—3}

+M+ 72+ A3+ s+ is —4dg — 10

+ > (=70 (Jry6j — A1216))
{j 20,7+6/<2j,—3}

+ > (—1)/™4(lgy6 — A1av6))
{j >0,9+6,<2j,—3}

LD

{j 20,1146/ <2/,—3}

(=17 (l1146) — A16+6))

p—1

+ (=D (A2j,-3 = J2j,-1) + ) 1(=DFFUT
J=Jo

X (A2j+1 — 42j+2).

+ (=1 (Jpj,—3 — 22j,-1)
p—1

+ Y (=D (g — Jaji2)
j:jo

is negative because we can decompose the expression
above in different sums, where each one of them con-
stitutes a decreasing sequence in absolute value with
alternate signs and being its first element negative.
Since in all the possible cases we get a contradic-
tion, the initial hypothesis that, is assigned to a ver-
tex with odd index is inconsistent. Therefore, using
Lemma A.1 we conclude th@p can only be assigned
tovo. O
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